

Michael I. Darter

Emeritus Professor, University of Illinois Principal Engineer, ERES Division of ARA, Inc.

Caltrans/FHWA/Western States Chapter
Annual Conference
October 18, 20 and 21, 2004

Achieving Long-Life Concrete Pavements in California

- Four major processes in producing a concrete pavement:
 - 1. Structural & joint design of the pavement
 - 2. Concrete materials and mix design
 - 3. Construction of the pavement
 - 4. Maintenance
- Long-life: like links in a chain...

The Past: Survival Curves

The Past: Relying on Aggregate Interlock Only

High deflections and stresses

Unreliable for HEAVY traffic (faulting and corner breaks)

The Past: Too Long Joint Spacing 21 projects in California 1970's construction

- 3.6 to 4.0-m joint spacing
 - ✓ Mean 10 percent slabs cracked
- 5.5 to 5.8-m joint spacing
 - ✓ Mean 34 percent slabs cracked

The Past: Durability Problems Alkali-Silica Reaction

The Future: Survival Curves

Current Improved Technology

Mechanistic Design

 Several countries including the US has sponsored the development of a new procedures based on engineering principles

AASHTO: NCHRP 1-37A

- 6-year (1998-2004) research and development of new concrete pavement design procedure
- Paradigm shift in design of new JPCP & CRCP & Overlays

Mechanistic-Empirical Design

Design Guide Software

Design to Prevent Key Distress

LTPP PCC Smoothness Trends

Impact of Construction: Initial Smoothness

NCHRP 1-31: Effect of Initial Pavement Smoothness on Pavement Life

- Evaluation of historical pavement performance data from 10 States strongly indicated that <u>initial</u>
 <u>smoothness</u> has a <u>significant effect on pavement life</u>.
- Added pavement life is obtained by achieving a higher level of initial smoothness.
- Two different analyses used to reach this finding:
 - ✓ Smoothness along many projects (mile by mile): smooth sections stay smooth over life.
 - ✓ Pavement survival analysis in Kentucky & Wisconsin.

Materials Characterization

 For Each Layer: longitudinal edges, elastic modulus, strength, thickness, thermal & hydraulic properties, others ...

Concrete Slab Characterization

- Flexural strength (over time)
- Modulus of elasticity (over time)
- Coefficient of thermal expansion
- Permanent curl/warp
- Joint spacing
- Slab thickness

Effects of PCC properties on JPCP Performance--Strength

- Cracking: strength < stress
- California flexural strength at 28-days: 667 psi [585-720]
- PCC strength the higher the better to reduce cracking, but may be associated with:
 - √ Higher shrinkage
 - ✓ Higher modulus of elasticity

PCC strength gain model

Effects of PCC properties on JPCP Performance—Modulus of Elasticity, Ec

- PCC elastic modulus
 (Ec) lower is better!
- Cores from California JPCP showed consistently lower Ec
 - ✓ 3,325,000 psi CA vs 4,800,000 psi nationally

Effects of PCC strength on JPCP cracking

28-day PCC modulus of rupture, psi

Effects of PCC properties on JPCP— Thermal Coefficient Expansion

- Thermal coefficient –
 lower is better!
- California PCC ranged from 5.9 to 6.6 with an average of 6.15 E-06 per degree F
- Depends mainly on aggregate type
- Test method AASHTO TP60-00

Concrete CTE – Test Apparatus

• Length change is measured after expansion and contraction cycles, i.e., a heating and a cooling cycle

Test Frame

Baseplate dia = 10"

Concrete core

3 Semi-spherical support buttons

Effects of PCC Thermal Coefficient

PCC coefficient of thermal expansion, x10⁻⁶/°F

Concrete Coefficient of Thermal Expansion

Slab Length Vs. Cracking

Slab Thickness & Joint Spacing Vs Cracking

Slab Thickness Vs. Cracking

Widened Slab Design (Cost Effective)

Climatic Factors Slab Curling/Warping

Construction Curling Problem

- Sunny, hot morning paving critical
- Negative temperature gradient built into slab results in upward curl over life

Upward Curl—Top Down Crack

Critical stress region at top of slab

Top of slab (crack initiation)

Now prevent through design & constr.

Components of Curl/Warp Stress (top down cracking risk)

Actual Temperature Gradient

Built-in Curling

Moisture Gradient

$$\Delta T = \Delta T_{Actual} + \Delta T_{Built-in} + \Delta T_{Shrinkage}$$

Joint Load Transfer

Reduce deflections and stresses

Joint Performance

Joint faulting, mm

Build Concrete Pavement in Your Computer before Building in Field

- Select a trial design
- Obtain inputs, local climate, traffic, soils
- Run Design Guide Software year by year over design life
- Examine performance
- If problems, revise design

50-Year Design JPCP Example

- Project Interstate405 Los Angles
- Widening of existing 8 to 12-lanes
- ADT 307,000, 5% trucks

50-Year Design JPCP — Results Traffic —

- Traffic loadings
 - ✓ Trucks: 126 million/lane/50 years
 - √ 4700/day/lane year 1
 - √ 9300/day/lane year 50

50-Year Design JPCP — Trial Design —

- JPCP slab: 254 mm
- Joint spacing: 4.6 m
- Dowels: 38 mm diameter
- Base: Lean concrete
- Subbase: Aggregate
- Tied concrete shoulder

50-Year Design JPCP — Results 250 mm —

- Joint faulting: 0.8 mm ok
- Slab cracking: 11% at 50% Reliability
 - √ 25% at 95% Reliability (too high)
- IRI: 1.41 m/km ok

50-Year Design JPCP — Results 275 mm —

- Joint faulting: 0.7 mm ok
- Slab cracking: 3.5% at 50% Reliability
 - √ 13% at 95% Reliability ok
- IRI: 1.3 m/km ok
- Acceptable Design

The Future?

The Future: Heavier Axle Loads

1998 Truck Flow

2020 Forecast Truck Flow

The Future

 Requirement for no lane closures for many, many years

Rapid construction and maintenance required

The Future: Demand Longer Life

Thank you

Questions? emails welcome@mdarter@ara.com

